Exercise 9

Show that

$$
\frac{d}{d x}\left(\ln x+\frac{\ln x}{2}+\frac{\ln x}{4}+\cdots\right)=\frac{2}{x}, x>0
$$

Solution

Inspecting the series in the parentheses, we see that it is geometric. The first term is

$$
a_{1}=\ln x
$$

and the common ratio is

$$
r=\frac{1}{2}
$$

Consequently, the sum of the series is

$$
\begin{aligned}
S & =\frac{a_{1}}{1-r} \\
& =\frac{\ln x}{1-\frac{1}{2}} \\
& =\frac{\ln x}{\frac{1}{2}} \\
& =2 \ln x .
\end{aligned}
$$

Differentiating $2 \ln x$ gives us $2 / x$, the desired result. Therefore,

$$
\frac{d}{d x}\left(\ln x+\frac{\ln x}{2}+\frac{\ln x}{4}+\cdots\right)=\frac{2}{x}, x>0 .
$$

